Interstitial iron concentrations across multicrystalline silicon wafers via photoluminescence imaging

نویسندگان

  • AnYao Liu
  • Yang-Chieh Fan
  • Daniel Macdonald
چکیده

We present high-resolution images of the lateral distribution of interstitial iron across wafers from various positions along the length of a directionally solidifiedmulticrystalline silicon ingot. Iron images were taken on wafers in the as-cut state and also after two different phosphorus gettering steps performed at 8458C for 30min, one with an additional anneal at 6008C for 5 h (referred to as extended gettering). The iron images were obtained by taking calibrated photoluminescence (PL) images of the low injection carrier lifetimes, before and after dissociation of iron–boron pairs via strong illumination. The iron images clearly reveal the internal gettering of iron during ingot cooling to grain boundaries and dislocation clusters, resulting in much lower dissolved iron concentrations at those features. In contrast, the PL images of gettered wafers exhibit a reversed distribution of dissolved iron compared to the as-cut wafers, in other words, with higher interstitial iron concentrations at the grain boundaries than within the grains, most probably owing to the precipitated iron at the grain boundaries partly dissolving during the high-temperature gettering process. Phosphorus gettering was found to result in a significant reduction of interstitial iron both inside the grains and at grain boundaries. The extended gettering resulted in a further significant reduction in all parts of the wafers and along all sections of the ingot. Copyright# 2011 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence

Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtai...

متن کامل

Precipitation of interstitial iron in multicrystalline silicon

The internal gettering of iron in silicon via iron precipitation at low processing temperatures is known to improve solar cell efficiencies. Studies have found that the optimal temperature lies in the range of 500 o C-600 o C. In this paper, we present experimental results on quantitatively analysing the precipitation of interstitial Fe in multicrystalline silicon wafers during the 500 o C-600 ...

متن کامل

Studying precipitation and dissolution of iron in multicrystalline silicon wafers during annealing

In this paper we study the changes in iron concentrations and distributions in multicrystalline silicon (mc-Si) wafers after annealing in the temperature range of 600-900 o C. The dissolved Fe distributions across mc-Si wafers are obtained by photoluminescence imaging taken before and after dissociation of FeB pairs. The results show that the precipitation of dissolved Fe, both near the grain b...

متن کامل

Behaviour of Natural and Implanted Iron during Annealing of Multicrystalline Silicon Wafers

Changes in the concentration of interstitial iron in multicrystalline silicon wafers after high temperature annealing (900oC) have been monitored by carrier lifetime measurements. Two cooling rates were investigated. The first was considered ‘fast’, meaning the interstitial Fe had no time to diffuse to precipitation sites, and should therefore be frozen-in, despite being far above the solubilit...

متن کامل

Estimation of solidification interface shapes in a boron–phosphorus compensated multicrystalline silicon ingot via photoluminescence imaging

This paper introduces a method for estimating the shape of the solidification front along the height of a directionally-solidified multicrystalline silicon ingot. The technique uses net dopant density images, obtained on wafers via photoluminescence imaging under surface limited conditions, after the impact of grain boundaries is eliminated through an image processing procedure. By modeling the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011